Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.19.572339

ABSTRACT

A better understanding of the bifurcation of human B cell differentiation into memory B cells (MBC) and antibody-secreting cells (ASC) and identification of MBC and ASC precursors is crucial to optimize vaccination strategies or block undesired antibody responses. To unravel the dynamics of antigen-induced B cell responses, we compared circulating B cells reactive to SARS-CoV-2 (Spike, RBD and Nucleocapsid) in COVID-19 convalescent individuals to B cells specific to Influenza-HA, RSV-F and TT, induced much longer ago. High-dimensional spectral flow cytometry indicated that the decision point between ASC- and MBC-formation lies in the CD43+CD71+IgG+ Activated B cell compartment, showing properties indicative of recent germinal center activity and recent antigen encounter. Within this Activated B cells compartment, CD86+ B cells exhibited close phenotypical similarity with ASC, while CD86- B cells were closely related to IgG+ MBCs. Additionally, different activation stages of the IgG+ MBC compartment could be further elucidated. The expression of CD73 and CD24, regulators of survival and cellular metabolic quiescence, discerned activated MBCs from resting MBCs. Activated MBCs (CD73-CD24lo) exhibited phenotypical similarities with CD86- IgG+ Activated B cells and were restricted to SARS-CoV-2 specificities, contrasting with the resting MBC compartment (CD73-/CD24hi) that exclusively encompassed antigen-specific B cells established long ago. Overall, these findings identify novel stages for IgG+ MBC and ASC formation and bring us closer in defining the decision point for MBC or ASC differentiation. ImportanceIn this study, researchers aimed to better understand human B cell differentiation and their role in establishing long-lived humoral immunity. Using high-dimensional flow cytometry, they studied B cells reactive to three SARS-CoV-2 antigens in individuals convalescent for COVID-19, and compared their phenotypes to B cells reactive to three distinct protein antigens derived from vaccines or viruses encountered months to decades before. Their findings showed that Activated B cells reflect recent germinal center graduates that may have diverse fates; with some feeding the pool of antibody-secreting cells and others fueling the resting memory B cell compartment. Activated B cells gradually differentiate into resting memory B cells through an activated MBC phase. Increased expression of the cellular metabolic regulators CD73 and CD24 in resting memory B cells distinguishes them from the activated memory B cells phase, and is likely involved in sustaining a durable memory of humoral immunity. These findings are crucial for the development of vaccines that provide lifelong protection and may show potential to define reactive B cells in diseases where the cognate-antigen is still unknown such as in autoimmunity, cancers, or novel viral outbreaks.


Subject(s)
Autoimmune Diseases , COVID-19 , Neoplasms , Lymphoma, B-Cell
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.14.23291395

ABSTRACT

Background After initial COVID-19 disease, immune dysregulation may persist and drive post-acute sequelae of COVID-19 (PASC). We described longitudinal trajectories of cytokines in adults up to 6 months following SARS-CoV-2 infection and explored early predictors of PASC. Methods RECoVERED is a prospective cohort of individuals with laboratory-confirmed SARS-CoV-2 infection between May 2020 and June 2021 in Amsterdam, the Netherlands. Serum was collected at weeks 4, 12 and 24 of follow-up. Monthly symptom questionnaires were completed from month 2 after illness onset onwards; lung diffusion capacity (DLCO) was tested at 6 months. Cytokine concentrations were analysed by human magnetic Luminex screening assay. We used a linear mixed-effects model to study log-concentrations of cytokines over time, assessing their association with socio-demographic and clinical characteristics that were included in the model as fixed effects. Results 186/349 (53%) participants had [≥]2 serum samples and were included. Of these, 101 (54%: 45/101[45%] female, median age 55 years [IQR=45-64]) reported PASC at 12 and 24 weeks after illness onset. We included 37 reference samples (17/37[46%] female, median age 49 years [IQR=40-56]). PASC was associated with raised CRP and abnormal diffusion capacity with raised IL10, IL17, IL6, IP10 and TNF at 24 weeks in the multivariate model. Early (0-4 week) IL-1{beta} and BMI at illness onset were predictive of PASC at 24 weeks. Conclusions Our findings indicate that immune dysregulation plays an important role in PASC pathogenesis, especially among those individuals with reduced pulmonary function. Early IL-1{beta} shows promise as predictors of PASC.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.09.22282120

ABSTRACT

Background: Studies on long COVID differ in the selection of symptoms used to define the condition. We aimed to assess to what extent symptom selection impacts prevalence estimates of long COVID. Methods: In a prospective cohort of patients who experienced mild to critical coronavirus disease 2019 (COVID-19), we used longitudinal data on the presence of 20 different symptoms to evaluate changes in the prevalence of long COVID over time when altering symptom selection. Results: Changing symptom selection resulted in wide variation in long COVID prevalence, even within the same study population. Long COVID prevalence at 12 months since illness onset ranged from 39.6% (95%CI=33.4-46.2) when using a limited selection of symptoms to 80.6% (95%CI=74.8-85.4) when considering any reported symptom to be relevant. Conclusions: Comparing the occurrence of long COVID is already complex due to heterogeneity in study design and population. Disparate symptom selection may further hamper comparison of long COVID estimates between populations. Harmonised data collection tools could be one means to achieve greater reproducibility and comparability of results.


Subject(s)
COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.05.22270494

ABSTRACT

Summary Seasonal influenza viruses typically cause annual epidemics worldwide infecting 5-15% of the human population 1 . However, during the first two years of the COVID-19 pandemic, seasonal influenza virus circulation was unprecedentedly low with very few reported infections 2 . The lack of immune stimulation to influenza viruses during this time, combined with waning antibody titres to previous influenza virus infections, could lead to increased susceptibility to influenza in the coming seasons and to larger and more severe epidemics when infection prevention measures against COVID-19 are relaxed 3,4 . Here, based on serum samples from 165 adults collected longitudinally before and during the pandemic, we show that the waning of antibody titres against seasonal influenza viruses during the first two years of the pandemic is likely to be negligible. Using historical influenza virus epidemiological data from 2003-2019, we also show that low country-level prevalence of each influenza subtype over one or more years has only small impacts on subsequent epidemic size. These results suggest that the risks posed by seasonal influenza viruses remained largely unchanged during the first two years of the COVID-19 pandemic and that the sizes of future seasonal influenza virus epidemics will likely be similar to those observed before the pandemic.


Subject(s)
COVID-19 , Influenza, Human
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.27.21264163

ABSTRACT

BackgroundEmerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. MethodsIn a prospective cohort of 165 SARS-CoV-2 naive health care workers, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. FindingsFour weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of BNT162b2 and mRNA-1273 (geometric mean titers (GMT) of 197 [95% CI 149-260] and 313 [95% CI 218-448], respectively), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 26 [95% CI 18-37] and 14 [95% CI 8-25] IU/ml, respectively). These findings were robust for adjustment to age and sex. VOCs neutralization was reduced in all vaccine groups, with the largest (9- to 80-fold) reduction in neutralization observed against the Omicron variant. The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. Study limitations include the lack of cellular immunity data. ConclusionsOverall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination.

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.26.21256092

ABSTRACT

Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11 to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2 to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 S protein immunization in macaques, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.


Subject(s)
COVID-19 , Poult Enteritis Mortality Syndrome
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.26.21257441

ABSTRACT

Emerging SARS-CoV-2 variants pose a threat to human immunity induced by natural infection and vaccination. We assessed the recognition of three variants of concern (B.1.1.7, B.1.351 and P.1) in cohorts of COVID-19 patients ranging in disease severity (n = 69) and recipients of the Pfizer/BioNTech vaccine (n = 50). Spike binding and neutralization against all three VOC was substantially reduced in the majority of samples, with the largest 4-7-fold reduction in neutralization being observed against B.1.351. While hospitalized COVID-19 patients and vaccinees maintained sufficient neutralizing titers against all three VOC, 39% of non-hospitalized patients did not neutralize B.1.351. Moreover, monoclonal neutralizing antibodies (NAbs) show sharp reductions in their binding kinetics and neutralizing potential to B.1.351 and P.1, but not to B.1.1.7. These data have implications for the degree to which pre-existing immunity can protect against subsequent infection with VOC and informs policy makers of susceptibility to globally circulating SARS-CoV-2 VOC.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.25.21257797

ABSTRACT

Background The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose sparing strategies, particularly single vaccine dosing of individuals with prior SARS-CoV-2 infection. Methods We evaluated SARS-CoV-2 specific antibody responses following a single-dose of BNT162b2 (Pfizer-BioNTech) mRNA vaccine in 155 previously SARS-CoV-2-infected individuals participating in a population-based prospective cohort study of COVID-19 patients. Participants varied widely in age, comorbidities, COVID-19 severity and time since infection, ranging from 1 to 15 months. Serum antibody titers were determined at time of vaccination and one week after vaccination. Responses were compared to those in SARS-CoV-2-naive health care workers after two BNT162b2 mRNA vaccine doses. Results Within one week of vaccination, IgG antibody levels to virus spike and RBD proteins increased 27 to 29-fold and neutralizing antibody titers increased 12-fold, exceeding titers of fully vaccinated SARS-CoV-2-naive controls (95% credible interval (CrI): 0.56 to 0.67 v. control 95% CrI: -0.16 to -0.02). Pre-vaccination neutralizing antibody titers had the largest positive mean effect size on titers following vaccination (95% CrI (0.16 to 0.45)). COVID-19 severity, the presence of comorbidities and the time interval between infection and vaccination had no discernible impact on vaccine response. Conclusion A single dose of BNT162b2 mRNA vaccine up to 15 months after SARS-CoV-2 infection provides neutralizing titers exceeding two vaccine doses in previously uninfected individuals. These findings support wide implementation of a single-dose mRNA vaccine strategy after prior SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.05.21256710

ABSTRACT

BackgroundFew longitudinal data on COVID-19 symptoms across the full spectrum of disease severity are available. We evaluated symptom onset, severity and recovery up to nine months after illness onset. MethodsThe RECoVERED Study is a prospective cohort study based in Amsterdam, the Netherlands. Participants aged>18 years were recruited following SARS-CoV-2 diagnosis via the local Public Health Service and from hospitals. Standardised symptom questionnaires were completed at recruitment, at one week and month after recruitment, and monthly thereafter. Clinical severity was defined according to WHO criteria. Kaplan-Meier methods were used to compare time from illness onset to symptom recovery, by clinical severity. We examined determinants of time to recovery using multivariable Cox proportional hazards models. ResultsBetween 11 May 2020 and 31 January 2021, 301 COVID-19 patients (167[55%] male) were recruited, of whom 99/301(32.9%) had mild, 140/301(46.5%) moderate, 30/301(10.0%) severe and 32/301(10.6%) critical disease. The proportion of symptomatic participants who reported at least one persistent symptom at 12 weeks after illness onset was greater in those with severe/critical disease (81.7%[95%CI=68.7-89.7%]) compared to those with mild or moderate disease (33.0%[95%CI=23.0-43.3%] and 63.8%[95%CI=54.8-71.5%]). Even at nine months after illness onset, almost half of all participants (42.1%[95%CI=35.6-48.5]) overall continued to report [≥]1 symptom. Recovery was slower in participants with BMI[≥]30kg/m2 (HR 0.51[95%CI=0.30-0.87]) compared to those with BMI<25kg/m2, after adjusting for age, sex and number of comorbidities. ConclusionsCOVID-19 symptoms persisted for nine months after illness onset, even in those with mild disease. Obesity was the most important determinant of speed of recovery from symptoms.


Subject(s)
COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.15.21253597

ABSTRACT

ABSTRACT Background It is important to gain insight into the burden of COVID-19 at city district level to develop targeted prevention strategies. We examined COVID-19 related hospitalisations by city district and migration background in the municipality of Amsterdam, the Netherlands. Methods We used surveillance data on all PCR-confirmed SARS-CoV-2 hospitalisations in Amsterdam until 31 May 2020, matched to municipal registration data on migration background. We calculated directly standardised (age, sex) rates (DSR) of hospitalisations, as a proxy of COVID-19 burden, per 100,000 population by city district and migration background. We calculated standardised rate differences (RD) and rate ratios (RR) to compare hospitalisations between city districts of varying socio-economic and health status and between migration backgrounds. We evaluated the effects of city district and migration background on hospitalisation after adjusting for age and sex using Poisson regression. Results Between 29 February and 31 May 2020, 2326 cases (median age 57 years [IQR=37-74]) were notified in Amsterdam, of which 596 (25.6%) hospitalisations and 287 (12.3%) deaths. 526/596 (88.2%) hospitalisations could be matched to the registration database. DSR were higher in individuals living in peripheral (South-East/New-West/North) city districts with lower economic and health status, compared to central districts (Centre/West/South/East) (RD=36.87,95%CI=25.79-47.96;RR=1.82,95%CI=1.65-1.99), and among individuals with a non-Western migration background compared to ethnic-Dutch individuals (RD=57.05,95%CI=43.34-70.75; RR=2.36,95%CI=2.17-2.54). City district and migration background were independently associated with hospitalisation. Conclusion City districts with lower economic and health status and those with a non-Western migration background had the highest burden of COVID-19 during the first wave of COVID-19 in Amsterdam.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL